

Definition

The standard deviation of a set of sample values, denoted by s, is a measure of variation of values about the mean.

Sample Standard Deviation Formula

$s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Sample Standard Deviation (Shortcut Formula)

$s=\sqrt{\frac{n \Sigma\left(x^{2}\right)-(\Sigma x)^{2}}{n(n-1)}}$

Sample Standard Deviation

 (Shortcut Formula)$$
s=\sqrt{\frac{\sum\left(x^{2}\right)-n(\bar{x})^{2}}{n-1}}
$$

Standard Deviation Important Properties

* The standard deviation is a measure of variation of all values from the mean.
* The value of the standard deviation s is usually positive.
* The value of the standard deviation s can \qquad increase dramatically with the inclusion of one or more outliers (data values far away from all others).
* The units of the standard deviation s are the same as the units of the original data values.

Old Faithful Geyser Intervals between eruptions (min)	
989295879690659295939894 Find:	
A. Sample standard deviation	
$\bar{x}=91.25$	
$\sum^{n} X_{i}^{2}=100781$	
B. Sample standard deviation using Range Rule of Thumb	
	3.1-7

Comparing Variation in Different Samples

It's a good practice to compare two sample standard deviations only when the sample means are approximately the same.

When comparing variation in samples with very different means, it is better to use the coefficient of variation, which is defined later in this section.

Population Standard Deviation
 $$
\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}
$$

This formula is similar to the previous formula, but instead, the population mean and population size are used.

Unbiased Estimator

The sample variance s^{2} is an unbiased estimator of the population \qquad variance σ^{2}, which means values of s^{2} tend to target the value of σ^{2} instead of systematically tending to
\qquad overestimate or underestimate σ^{2}.
\qquad
\qquad
\qquad
\qquad
\qquad

```
Variance - Notation
    s = sample standard deviation
    s}\mp@subsup{}{}{2}= sample varianc
    \sigma = population standard deviation
    \sigma
```

Beyond the Basics of Measures of Variation

Copyright © 2010.PRAOBooumarteatixon Education, Inc. All Rights Reserved.
3.1-13

Range Rule of Thumb
is based on the principle that for many data sets, the vast majority (such as 95%) of sample values lie within two standard deviations of the mean.

Range Rule of Thumb for Interpreting a Known Value of the Standard Deviation
 Informally define usual values in a data set to be those that are typical and not too extreme. Find rough estimates of the minimum and maximum "usual" sample values as follows:
 Minimum "usual" value $=($ mean $)-2 \times($ standard deviation $)$
 Maximum "usual" value $=($ mean $)+2 \times($ standard deviation $)$

Range Rule of Thumb for Estimating a Value of the Standard Deviation s

\qquad
To roughly estimate the standard \qquad deviation from a collection of known sample data use

$$
s \approx \frac{\text { range }}{4}
$$

where
range $=($ maximum value $) \boldsymbol{-}($ minimum value $)$

Properties of the Standard Deviation

- Measures the variation among data values
- Values close together have a small standard deviation, but values with much more variation have a larger standard deviation
- Has the same units of measurement as the original data

Copyright © 2010,Penfrozumahleatimon Education, Inc. All Rights Reserved.

Properties of the Standard Deviation

- For many data sets, a value is unusual if it differs from the mean by more than two standard deviations
- Compare standard deviations of two \qquad different data sets only if the they use \qquad have means that are approximately the same

Empirical (or 68-95-99.7) Rule

For data sets having a distribution that is approximately bell shaped, the following properties apply:

* About 68\% of all values fall within 1 standard deviation of the mean.
* About 95\% of all values fall within 2 standard deviations of the mean.
* About 99.7\% of all values fall within 3 standard deviations of the mean.

Copyright © 2010.,Parfozourahleatimon Education. Inc. All Rights Reserved.

The Empirical Rule

3.1-20

The Empirical Rule

Chebyshev's Theorem

The proportion (or fraction) of any set of data lying within K standard deviations of the mean is always at least $1-1 / K^{2}$, where K is any positive number greater than 1.

For $K=2$, at least 3/4 (or 75\%) of all values lie within 2 standard deviations of the mean.
*For $K=3$, at least 8/9 (or 89\%) of all values lie within 3 standard deviations of the mean.

Rationale for using $n-1$ versus n

There are only $n-1$ independent values. With a given mean, only $n-1$ values can be freely assigned any number before the last value is determined.
Dividing by $\boldsymbol{n}-1$ yields better results than dividing by n. It causes s^{2} to target σ^{2} whereas division by n causes s^{2} to underestimate σ^{2}.

Coefficient of Variation

The coefficient of variation (or CV) for a set of nonnegative sample or population data, expressed as a percent, describes the standard deviation relative to the mean.
\qquad

Sample
$c v=\frac{S}{\bar{x}} \cdot 100 \%$
Population
$c v=\frac{\sigma}{\mu} \cdot 100 \%$
\qquad
\qquad
\qquad
\qquad
\qquad

Recap

In this section we have looked at: \qquad
\qquad

* Standard deviation of a sample and population
* Variance of a sample and population \qquad
* Range rule of thumb
* Empirical distribution
* Chebyshev's theorem
* Coefficient of variation (CV)

Copyright © 2010,RAPGBoummulteatimon Education, Inc. All Rights Reserved.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Concept

This section introduces measures of relative standing, which are numbers showing the location of data values relative to the other values within a data \qquad set. They can be used to compare values from different data sets, or to compare values within the same data set. The most important concept is the z score. We will also discuss percentiles and quartiles, as well as a new statistical graph called the boxplot.

Part 1

Basics of z Scores, Percentiles, Quartiles, and Boxplots

Measures of Position z Score

Sample
Population
$z=\frac{x-\bar{x}}{s}$
$z=\frac{x-\mu}{\sigma}$

Round z scores to 2 decimal places
\qquad
\qquad
\qquad
\qquad
\qquad

Whenever a value is less than the mean, its \qquad corresponding z score is negative
Ordinary values: $-2 \leq z$ score ≤ 2
Unusual Values: \quad z score <-2 or z score >2

Percentiles

\qquad
\qquad
are measures of location. There are 99 percentiles denoted $P_{1}, P_{2}, \ldots P_{99}$, which divide a set of data into 100 groups with about 1% of the values in \qquad each group. \qquad
\qquad

Converting from the kth Percentile to the Corresponding Data Value

Notation
n total number of values in the data set
$L=\frac{k}{100} \cdot n$
k percentile being used
L locator that gives the position of a value
$P_{k} k$ th percentile

Converting from the
k th Percentile to the Corresponding Data Value

 $n=$ number of volues $k=$ percentile en question

\rightarrow is
Change Lby rounding
It upge the next
larger whole number
The value of P_{t} ts the
The volue of P_{n} is the
th y volue. counting from
Leth vilue, counting fif
the lowst.
Copyright © 2010, 2007, 2004 Pearson Education. Inc. All Rights Reserved.
3.1-36

Quartiles

Are measures of location, denoted Q_{1}, Q_{2}, and Q_{3}, which divide a set of data into four groups \qquad with about 25% of the values in each group.
$\because Q_{1}$ (First Quartile) separates the bottom 25% of sorted values from the top 75%.
$\therefore Q_{2}$ (Second Quartile) same as the median; separates the bottom 50% of sorted values from the top 50%.

* Q_{3} (Third Quartile) separates the bottom 75% of sorted values from the top 25%.

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Quartiles

$$
Q_{1}, Q_{2}, Q_{3}
$$

divide ranked scores into four equal parts

Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Some Other Statistics

Interquartile Range (or IQR): $Q_{3}-Q_{1}$

* Semi-interquartile Range: $\frac{Q_{3}-Q_{1}}{2}$

Midquartile: $\quad Q_{3}+Q_{1}$

- 10-90 Percentile Range: $P_{90}-P_{10}$

5-Number Summary

For a set of data, the 5-number \qquad summary consists of the minimum value; the first quartile
\qquad Q_{1}; the median (or second quartile Q_{2}); the third quartile, Q_{3}; and the maximum value.
\qquad
\qquad
\qquad

Boxplot

A boxplot (or box-and-whisker-
\qquad diagram) is a graph of a data set that consists of a line extending from the minimum value to the maximum value, and a box with lines drawn at the first quartile, \qquad Q_{1}; the median; and the third quartile, Q_{3}.

Boxplots - Skewed Distribution \qquad
\qquad
\qquad
\qquad
\qquad
Skewed Distribution:
Salaries (in thousands of dollars) of NCAA Football Coaches \qquad

Part 2

\qquad
\qquad
Outliers and Modified Boxplots
\qquad
\qquad
\qquad
\qquad
\qquad

Outliers

* An outlier is a value that lies very far away from the vast majority of the other values in a data set.

Important Principles

* An outlier can have a dramatic effect \qquad on the mean.
* An outlier can have a dramatic effect on the standard deviation.
* An outlier can have a dramatic effect on the scale of the histogram so that the true nature of the distribution is totally obscured.

Outliers for Modified Boxplots

For purposes of constructing modified boxplots, we can consider outliers to be
\qquad data values meeting specific criteria.

In modified boxplots, a data value is an outlier if it is . . . \qquad
above Q_{3} by an amount greater than $1.5 \times$ IQR
below Q_{1} by an amount greater than $1.5 \times$ IQR

Modified Boxplots

Boxplots described earlier are called
\qquad skeletal (or regular) boxplots.
Some statistical packages provide \qquad modified boxplots which represent outliers as special points.

Modified Boxplot Construction

\qquad
A modified boxplot is constructed with these specifications: \qquad
A special symbol (such as an asterisk) is used to identify outliers.

* The solid horizontal line extends \qquad only as far as the minimum data value that is not an outlier and the \qquad maximum data value that is not an outlier. \qquad
\qquad

Modified Boxplots - Example

\qquad
\qquad
\qquad
\qquad
Pulse rates of females listed in Data Set 1 in Appendix B.
\qquad
\qquad

```
Putting It All Together
Always consider certain key factors:
* Context of the data
* Source of the data
* Sampling Method
* Measures of Center
* Measures of Variation
* Distribution
* Outliers
* Changing patterns over time
* Conclusions
* Practical Implications
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.```

